THB Workshop, BNL, July 23rd, 2014

ADSR/Spallation Target R&D Session

SUMMARY N. Simos, F. Méot, BNL

OBJECTIVE OF THE ADS-R/Spallation target R&D SESSION:

Hear thoughts from the community on relevant beamline activities addressing one or more issues that are of direct or indirect relevance to ADSR

Keeping in mind:

Goals

- Identify and/or begin to construct a user community
- Establish approximate parameters for (a) beamline(s),
- including energy, intensity, time structure,

Deliverables

- Working group summary report (Closing Plenary)
- Beam parameters spreadsheet

Topology Possibilities

LINAC 200MeV/30kW

> Booster 0.2-1.5 GeV/30kW

AGS 1.5-23 GeV/100kW

[R. Tribble / Plenary, Mo]

 ADS-R/Spallation target R&D projects at BNL could be seen as part of broader ambitions

 Inter-directorate BNL collaboration to develop a dual role hybrid accelerator driven system (LDRD, DP and other RFI

[H Abderrahim / Head of MYRRHA] MYRRHA SpallationTarget **Design and Qualification R&D Programme**

 Notable impact of experimental R&D: validated the 'window' option / MW class object

MYRRHA spallation target evolution from windowless to window design

- MYRRHA accelerator technology & beam characteristics
 - Cyclotron (1998 → 2002) towards LINAC (2003 → ...) → windowless
 - 350 MeV*5 mA (... → 2008) (windowless) → 600 MeV*2.4 mA → window (2009)
 - Current density > 50 μA/cm² (till 2008), no window material can survive **→** 600 MeV*2.4 mA **→** window (2009)

Spallation loop geometry simplification > window (2009)

- Windowless needed a separate loop to guarantee:
 - Needed LBE flow
 - Avoiding volatile spallation products leaving the free surface to the beam line
 - Avoiding interaction of proton beam with LBE in recirculation zone
- Safety authority requesting the window a barrier

- Ip reduced Impact current density on window Impact power density FA enlarged
- Impact current density
- Window target design becomes thinkable
- MEGAPIE exp. Promising results

Go Window!

[H Abderrahim / MYRRHA]

A source of inspiration for our beamline projects

MYRRHA Window spallation target R&D programme

- Feedback experience from MEGAPIE (design, LBE control, material testing, spallation products inventory)
- Material irradiation in BR2 (MTR, Mol, BE) and in BOR-60 (FR, Dimitrovgrad, RU)
- Window coolability in JLBL-3 loop at JAEA (Tokai, JP)
- Fuel scale Thermal-hydraulic and mechanical testing in COMPLOT loop at SCK•CEN (Mol, BE):
 - Flow control,
 - Erosion control,
 - Coolability,
 - Flow induced vibration
- Volatile spallation products control and mitigation
- Beam footprint shaping and control

[Sivertz / testBL, Mo] NSRL beamline

[M. Todosow / BNL] 21st CENTURY ADS IN CONTEXT ADS Applications/Issues/Challenges

Guidance to ADSR targetry/spallation R&D programme

- Accelerator:
 - Most applications require a high power accelerator in the range 5 – tens of MW beam power
 - High reliability and CW operation desirable/essential
- Target/Window:
 - Must be able to handle high power densities
 - Materials and geometry should maximize leakage of neutrons for "productive" use
 - Reliability, Maintainability, Inspectability, and Maintainability (RAMI) considerations crucial
- Applications:
 - No "killer app" for ADS has been identified
 - Several potential roles have been identified with varying demands implied
 - For energy production or meaningful transmutation, subcritical blanket is essential

[M. Todosow]

More regarding ADSR targetry can be found in the "OS White Paper"

Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production

H. Aït Abderrahim^h, J. Galambos^d, Y. Gohar^a, S. Henderson^{c*}, G. Lawrence^e, T. McManamy^d, A. C. Mueller^g, S. Nagaitsev^c, J. Nolen^a, E. Pitcher^{e*}, R. Rimmer^f, R. Sheffield^e, M. Todosow^b

^aArgonne National Laboratory

^bBrookhaven National Laboratory

^cFermi National Accelerator Laboratory

^dOak Ridge National Laboratory

^eLos Alamos National Laboratory

^fThomas Jefferson National Accelerator Facility

^gCNRS-IN2P3, France

^hSCK•CEN, Mol, Belgium

*Co-chairs

September 17, 2010

Finding #12: Spallation target technology has been demonstrated at the 1-MW level, sufficient to meet the "Transmutation Demonstration" mission.

Finding #13: With appropriate scaling at each step along a technology demonstration path, there are no obstacles foreseen that would preclude the deployment of spallation targets at a power level (10 to 30 MW) needed to meet the application of ADS at an industrial scale.

Finding #14: Technology is sufficiently well developed to meet the requirements of an ADS demonstration facility; some development is required for demonstrating and increasing overall system reliability.

Finding #15: For *Industrial-Scale Transmutation* requiring tens of MW of beam power many of the key technologies have been demonstrated, including front-end systems and accelerating systems, but demonstration of other components, improved beam quality and halo control, and demonstration of highly-

[A. Fabich / CERN] Experimental targetry at CERN

Considerations directly relevant to our concerns

- Test objects: TARGET = OBSTACLE
 interacting with the beam resulting in energy deposition:
 material damage, material vaporisation, thermal management, radiation damage,
 beam induced pressure waves, thermal shock
 - Benchmarking for simulations, material properties
 - Prototyping
 - "Thick" targets:
 - Production targets
 - Collimators
 - Accidental exposures of beam elements (e.g. magnets)
 - "Thin" targets
 - Beam measurement detectors and monitors
 - Also off-beam-axis in parasitic mode (e.g. BLMs)
 - Vacuum windows/pipes
 - Collimators (bending crystals)

[A. Fabich / CERN]

Broad and decades long experience in targetry at CERN

CNGS target

) in LHC transfer line (20

MERIT – mercury target test

[A. Fabich / CERN]

 Eventually further profiting to users communities in the form of a dedicated test facility, started 2011/2012 with a diversity of experiments HiRadMat

High-Radiation To Materials http://cern.ch/hiradmat

- Dedicated test facility
- Protons 440 GeV, also ions possible
 - In the higher range for production targets
 - With the small focus a higher pulse intensity can be simulated in terms of pe
- Maximum 5*10¹³ protons per pulse
- Tests with single pulses; HiRadMat is not an irradiation facility
 - Limited to ~1016 protons/year
 - Reduces residual radio-activity for manipulation
- Destructive tests possible as decoupled from accelerator machine/vacu
 - Proto Beam energy Bunches/pulse (max) Pulse intensity (max) 25, 5 **Bunch** spacing Pulse length (max) Beam spot Pulse energy (max)

- RIB target R&D
- LHC transfer collimator (2x)
- **BLM** validation
- RP benchmarking
- Crystal collimation

Experiments in 2012

See http://cern.ch/hiradmat for links

[A. Fabich / CERN]

 And more to come... an indication that that beam line does answer existing needs!

Proposals 2014/2015

- Call for proposals in spring 2014
 - 12 applications
- Beam run 2014/15 allows about 12 beam slots

22/7/2014

HiRadMat receives support from the EU FP7 grant AEGCARD2 within the activity "Transnational Access".

[P. McIntyre / Texas A&M] Strong Focusing Cyclotron

A little upstream of our preocupation, or :

How to produce high power from a FFAG cyclotron

 However in the end an impressive GeV/MW class ring design, potentially proper to feed beam to ADS-R targets!

[M. Wendel / SNS] SNS Target R&D

Mission is focused on neutron science 1.4 MW on target, 1 GeV, µs pulses to target at 60 Hz, plans to 2MW+ upgrade

Second target station, solid W, 500kW, planning is underway: TDR will be issued in FY15

Targetry R&D ranges from lifetime reliability to higher power enhancement, to performance optimization, cavitation damage, irradiation effects, etc.

Finally, [S. Leray / CEA]

MEGAPIE: the world's first high-power liquid metal spallation neutron source.

Ch. Latge¹ (CEA) France (<u>christian.latge@cea.fr</u>), M. Wohlmuther² (PSI) Switzerland (<u>michael.wohlmuther@psi.ch</u>),

Presented by Sylvie Leray (CEA) France

Y. Dai², D. Gavillet², A. Gessi³, A. Guertin⁶, B. Hammer², S. Heinitz², J. Henry¹, M. Konstantinovic⁴, S. Leray¹, R. Lindau⁵, C. Fazio⁵, S. Maloy⁸, J. Neuhausen², S. Saito⁷, K. Park⁹, P. Roubin¹, K. Samec², D. Schumann², K. Thomsen², A. Türler², L. Zanini², W. Wagner²

1 CEA Cadarache DEN-DTN 13108 Saint-Paul-lez-Durance France, 2 PSI Villigen; 3 ENEA Brasimone; 4 SCK-CEN Mol; 5 KIT ; 6 CNRS Subatech Nantes; 7 JAEA Tokai; 8 DOE-LANL, 9 KAERI

"TRANSFORMATIVE HADRON BEAMLINES" WORKSHOP BROOKHAVEN NATIONAL LABORATORY (UPTON, NEW YORK, USA) FROM JULY 21 TO 23, 2014.

[S. Leray / CEA]

Irradiation at PSI 08/2006- 12/2006

MEGAPIE EXPERIMENT

A key experiment in the ADS roadmap:

MEGAwatt Pllot Experiment (MEGAPIE) (1 MW) initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at PSI.

It was to be equipped to provide the largest possible amount of

scientific & technical information without jeopardizing its safe operation.

Several main challenges for the MEGAPIE project

- to design a completely different concept of target in the same geometry of the current spallation targets used at PSI.
- to develop and integrate two main prototypical systems: a specific heat removal system and an electro magnetic pump system for the hot heavy liquid metal in a very limited volume.
- to design a 9Cr martensitic steel (T91) beam window able to reach the assigned life duration.
 - to license a LBE in relevant conditions
 - to operate a LBE target
- to develop the decommissioning strategy and waste management
 - to characterize LBE and structural material (PIE)

[S. Leray / CEA]

Certainly a first choice source in the matter of requisites as well as objectives for possible ADSR/Spallation targetry R&D

GREAT INFORMATION!!!

The final MEGAPIE Technical Review Meeting (TRM) will be the last in a series of 11 meetings which were held on a regular basis during the project. In contrast to other TRMs the current meeting will be open to all interested researchers from the ADS, Material Science and Target Community and – of course – to all contributors to the MEGAPIE project.

In this TRM the main achievements of the MEGAPIE project in the past 15 years will be reviewed and – in a combined session with IWSMT – the latest Post Irradiation Examination (PIE) results will be presented for the first time.

Moreover, one session will be devoted to current ADS projects.

Drawn from [Ramberg / testBL, Mo]:

Tips for a Test Beam Manager:

It has been my experience [from light sources - FM] that

"If you build it, they will come!".

[Plan on] incremental improvements

What we (may) have in mind in the matter of ADSR/spallation dedicated beam line would probably not look very different from NSRL beamline

[Sivertz / testBL, Mo] NSRL Beamline Design

NSRL Beamline designed to be achromatic with a series of 9 quads, 10 steering/pitching dipoles, and a pair of octupoles to produce a large bowl-shaped intensity distribution suitable for radiobiology experiments.

 There are common interests with n-TOF hardware, however,

[Aberle / n-TOF, Tue] research fields of interest at n_TOF concern nuclear data

whereas, [Danon / n-TOF, Tue] reactor design is a combination of geometry and nuclear data calculations.

A dedicated beamline may require more flexibility in equipments, detection systems...

From N-TOF discussion - the question of maximum beam energy (beyond booster, need AGS ?) was raised

(Reminder, booster hypotheses: 1.5GeV, 6.67Hz, 1.e14ppsec)

- H Abderrahim :
- optimum energy is between 800MeV and 1GeV
- Gain from n multiplicity is not worth compared to issues resulting from higher

Booster type of energy thus fine in that frame of ADSR T/S R&D activities.

- More discussions :
- Bob C.: There may be interest in transmutation studies at very high energies, based on long targets, 24 GeV from AGS in that respect could be explored
- High energy also has relevance with S. Leray's n-TOF talk "high energy nuclear data" and other high energy spallation residues studies
- On the other hand AGS can bring low energy beam from booster (down to 500 MeV cf muSR R/D, less?) to former "AGS experimental areas". Connection equipment is preserved there, close to ~100% TBC, resurectable.

From ADSR/spallation T discussions

Plan both solid and liquid targetry R/D

- Recommendation on experimental R&D towards ADSR target: Radiation damage.
 Extend capabilities – BLAIRR
- Question to HA: Would MYRRHA be interested by ADSR targetry R/D at BNL?

Answ.: Issue is having a core. Consider possibility of zero-power core, is this feasible?

Presence of the EU project MYRRHA at THB – in the person of its director, Pr. H Abderrahim – is an opportunity to identify domains of possible collaboration between MYRRHA and BNL, the two below come out of this workshop:

- Window
- Beyond targetry/spallation beamline R&D: accelerator reliability

Confer ADSR/Spallation session, discussion [HA]:

- reliability is essential, strong constraint on beam trips >3sec in particular == beam has to follow rules of reactor == beam failure is reactor failure and results in drama == concern is that the ADSR might have long idling periods.
- Myrrha considers accelerator technology will be there by 2020, focusing on reliability.

A COMMENT PICKED FROM5th high power atrget Workshop, FNAL

B. Riemer talk

- Integrated approaches to source design around specific instrument performance metrics, utilizing optimization techniques, can show new paths to high-performance
 - TS-2 at ISIS
- When isn't higher target power the right direction for higher performance?
- Spallation sources
- Other high-power target applications R&D

"There may be more clever ways to high neutron flux then increasing the accelerator power"